

Split-Plot Designs Advantages

Spatial

- Different treatment sizes; e.g. field equipment, irrigation, etc.
- Minimize border effects; species, cultivars, fertility, etc.
- Reduce the physical size of an experiment

Temporal

Repeated sampling over time

Other

- Expand inference; e.g. include varieties in a fertility trial
- Concentrate precision on sub-plot factor

Split-Plot Designs Characteristics

- More than one plot size; i.e. plot size varies with treatment
- More than one error term; at least one per plot size
- More than one standard error for the mean; one for each treatment and additional ones for comparisons of treatment combinations

Split-Plot Designs Linear Additive Model

```
Y_{ijk} = \mu + B_i + \delta_{(i)} + W_j + BW_{ij} + \omega_{(ij)} + S_k + BS_{ik} + WS_{jk} + BWS_{ijk}
Where:
               variable to be analyzed from the kth experimental unit
               overall mean
               effect of the ith block
               restriction error associated with blocks
               effect of the j<sup>th</sup> whole-plot treatment
     BW<sub>ii</sub> =
              whole-plot error (a), NID(0,s2)
     \omega_{(ij)} =
               restriction error associated with whole plots
     S_k =
               effect of the kth sub-plot treatment
              interaction effect of the effect of the ith level of B with effect of
               the kth level of S (generally pooled into error b)
              interaction effect of the effect of the jth level of W with effect of
               the kth level of S
```

 $BWS_{iik} = sub-plot error (b), NID(0,s^2)$

Split-Plot Design Expected Mean Squares

	b R	w F	s F	
Source	i	j	k	EMS
B _i	1	w	s	$\sigma^2 + s\sigma^2_{\omega} + ws\sigma^2_{\delta} + ws\sigma^2_{B}$
$\delta_{(i)}$	1	w	s	$\sigma^2 + s\sigma^2_{\omega} + ws\sigma^2_{\delta}$
Wi	b	0	s	$\sigma^2 + s\sigma^2_{\omega} + s\sigma^2_{BW} + bs\Phi(W)$
BW _{ij}	1	0	S	$\sigma^2 + s\sigma^2_{\omega} + s\sigma^2_{BW}$
$\omega_{(ij)}$	1	1	s	$\sigma^2 + s\sigma^2_{\omega}$
S _k	b	w	0	σ^2 + $w\sigma^2_{BS}$ + $bw\Phi(S)$
BS _{ik}	1	w	0	σ^2 + $w\sigma^2_{BS}$
WS _{jk}	b	0	0	$\sigma^2 + \sigma^2_{BWS} + b\Phi(WS)$
BWS _{ijk}	1	0	0	$\sigma^2 + \sigma^2_{BWS}$

Split-Plot Design

Herbicide Trial Example

Factors:

Block 4

Variety (whole plot) 3

Herbicide (sub plot) 5

Herbicide Trial Example															
Field Layout															
Variety			1					3					2		
Herbicide	5	2	3	1	4	3	5	4	2	1	1	4	3	2	5
Variety	Variety 2 3 1														
Herbicide	4	1	3	5	2	3	1	5	4	2	2	1	3	5	4
Variety			2		•	1					3				
Herbicide	3	1	4	5	2	3	4	2	1	5	4	5	2	1	3
Variety			3			2					1				
Herbicide	4	5	3	1	2	1	2	3	4	5	4	2	3	1	5

Herbicide Trial Example **Expected Mean Squares** $\mathbf{Y}_{ijk} = \boldsymbol{\mu} + \mathbf{B}_i + \delta_{(i)} + \mathbf{V}_j + \mathbf{B} \mathbf{V}_{ij} + \boldsymbol{\omega}_{(ij)} + \mathbf{H}_k + \mathbf{B} \mathbf{H}_{ik} + \mathbf{V} \mathbf{H}_{jk} + \mathbf{B} \mathbf{V} \mathbf{H}_{ijk}$ b F R k EMS Source B_{i} 1 h v 1 h $\delta_{(i)}$ V_{i} b 0 h BV_{ii} 1 0 h h 1 1 $\omega_{(ij)}$ H_{k} 0 b 0 BH_{ik} 1 V VH_{jk} b 0 0 BVH_{ijk} 1 0 0

Herbicide Trial Example Expected Mean Squares										
$Y_{ijk} = \mu + B_i + \delta_{(i)} + V_j + BV_{ij} + \omega_{(ij)} + H_k + BH_{ik} + VH_{jk} + BVH_{ijk}$										
	b v h R F F									
	Source	i	j		EMS					
	B _i	1	٧	h	$\sigma^2 + h\sigma^2_{\omega} + vh\sigma^2_{\delta} + vh\sigma^2_{B}$					
	$\delta_{(i)}$	1	٧	h	$\sigma^2 + h\sigma^2_{\omega} + vh\sigma^2_{\delta}$					
	V _j	b	0	h	$\sigma^2 + h\sigma_{\omega}^2 + h\sigma_{BV}^2 + bh\Phi(V)$					
Error a	BV _{ij}	1	0	h	$\sigma^2 + h\sigma_{\omega}^2 + h\sigma_{BV}^2$					
	$\omega_{(ij)}$	1	1	h	$\sigma^2 + h\sigma^2_{\omega}$					
	H _k	b	٧	0	$\sigma^2 + v\sigma^2_{BH} + bv\Phi(H)$					
ļ ,	BH _{ik}	1	٧	0	σ^2 + $V\sigma^2_{BH}$					
Pool	VH _{jk}	b	0	_	$\sigma^2 + \sigma^2_{BVH} + b\Phi(VH)$					
Error b	BVH _{ijk}	1	0	0	$\sigma^2 + \sigma^2_{\text{BVH}}$					

Split-Plot Design Standard Errors

Main Effects Means

SE for whole-plot means:

$$SED = \sqrt{\frac{2MS_a}{bs}} \qquad \qquad a_i - a_j$$

SE for subplot means:

$$SED = \sqrt{\frac{2MS_b}{bw}}$$
 $b_i - b_j$

Split-Plot Design Standard Errors

Interaction Means

SED for subplot treatment means at the same whole-plot treatment level:

$$SED = \sqrt{\frac{2MS_b}{b}}$$

$$a_i b_j - a_i b_k$$

SED for whole-plot treatment means at the same subplot treatment level:

$$SED = \sqrt{\frac{2[(s-1)MS_b + MS_a]}{bs}}$$

$$a_i b_j - a_k b_j$$

SED for whole-plot treatment means at different subplot treatment levels:

$$SED = \sqrt{\frac{2[(s-1)MS_b + MS_a]}{bs}}$$

$$a_i b_j - a_k b_l$$

Split-Plot Design Example – Alfalfa Establishment

Treatments:

Blocks (B) 4

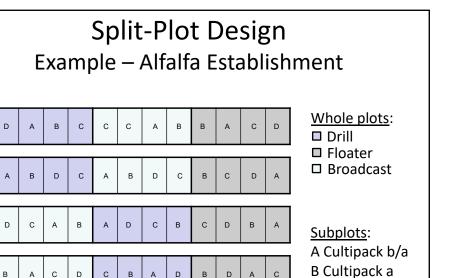
Whole plots - Seed distribution method (D) 3

- 5.5-in drill
- 70-ft floater
- · 30-ft broadcast

Subplots - Seed covering method (C) 4

- · Cultipack before/after seeding
- · Cultipack after seeding
- · Harrow after seeding
- Control

Data source: Ted Bailey, PROC MIXED Workshop, Annual Meetings of the American Society of Agronomy, 17 Oct. 1998

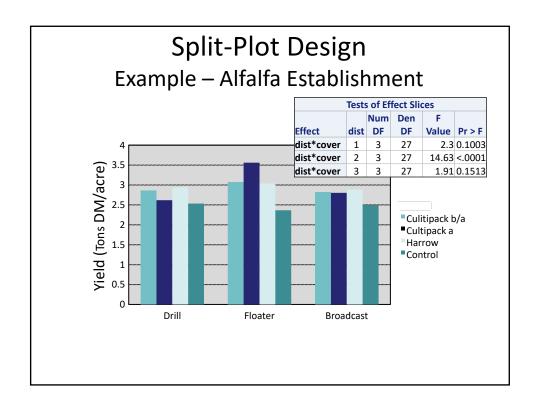


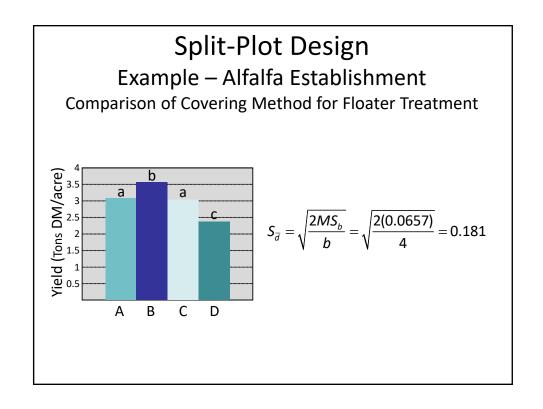
C Harrow D Control

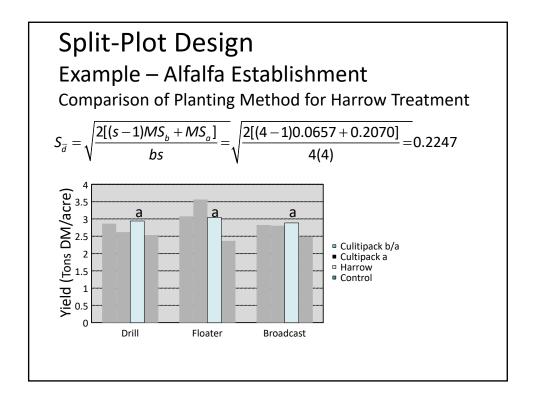
Split-Plot Design Example – Alfalfa Establishment

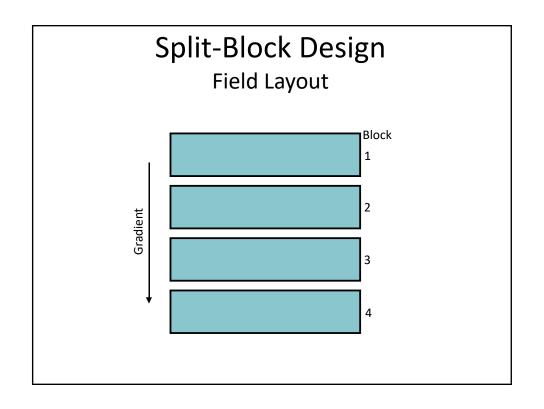
ANOVA

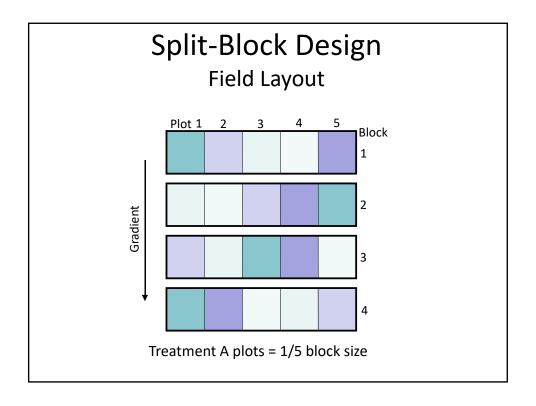
			Mean		
Source	DF	SS	Square	F Value	Pr > F
blk	3	2.444217	0.814739		
dist	2	0.753404	0.376702	1.82	0.2411
Error a	6	1.241696	0.206949		
cover	3	2.221267	0.740422	11.28	<.0001
dist*cover	6	1.490796	0.248466	3.78	0.0073
Error b	27	1.772988	0.065666		

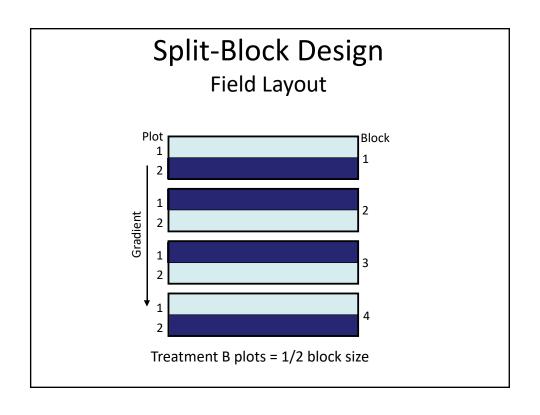


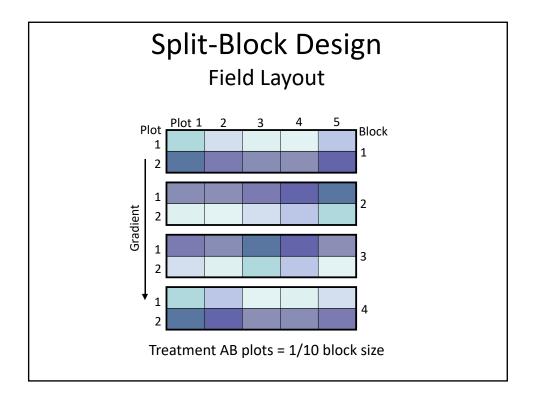












Split-Block Design Linear Additive Model

 $RAB_{ijk} = error c, NID(0,\sigma^2)$

Split-Block Design Expected Mean Squares

		r R	a F	b F	
	Source	i	j	k	EMS
	R _i	1	а	b	$\sigma^2 + a\sigma_{\lambda}^2 + b\sigma_{\omega}^2 + ab\sigma_{\delta}^2 + ab\sigma_{R}^2$
	$\delta_{(i)}$	1	а	b	$\sigma^2 + a\sigma_{\lambda}^2 + b\sigma_{\omega}^2 + ab\sigma_{\delta}^2$
	A_{j}	r	0	b	$\sigma^2 + a\sigma_{\lambda}^2 + b\sigma_{RA}^2 + rb\Phi(A)$
Error a	RA _{ij}	1	0	b	σ^2 + $a\sigma^2_{\lambda}$ + $b\sigma^2_{RA}$
	ω _(ij)	1	1	b	σ^2 + $b\sigma^2_{\omega}$
	B_k	r	а	0	σ^2 + a σ^2_{λ} + a σ^2_{RB} + raΦ(B)
Error b	RB _{ik}	1	а	0	σ^2 + $a\sigma^2_{\lambda}$ + $a\sigma^2_{RB}$
	$\lambda_{(ik)}$	1	а	1	σ^2 + $a\sigma^2_{\lambda}$
	AB_{jk}	r	0	0	$\sigma^2 + \sigma^2_{RAB} + r\Phi(AB)$
Error c	RAB _{ijk}	1	0	0	$\sigma^2 + \sigma^2_{RAB}$

Split-Block Design Standard Errors

Main Effects Means

SED for A mean comparisons:

$$S_{\overline{d}} = \sqrt{\frac{2MS_a}{rb}} \qquad a_i - a_j$$

SED for B mean comparisons:

$$S_{\bar{d}} = \sqrt{\frac{2MS_b}{ra}} \qquad b_i - b_j$$

Split-Block Design Standard Errors

Interaction Means

SED for A means at the same B treatment level:

$$S_{\overline{a}} = \sqrt{\frac{2[(b-1)MS_c + MS_a]}{rb}} \qquad a_i b_j - a_k b_j$$

SED for B means at the same A treatment level:

$$S_{\overline{d}} = \sqrt{\frac{2[(a-1)MS_c + MS_b]}{ra}} \qquad a_i b_j - a_i b_k$$

SED for A means at different B treatment levels:

$$S_{\vec{d}} = \sqrt{\frac{2[(ab - a - b)MS_c + aMS_a + bMS_b]}{rab}} \qquad \boxed{a_ib_j - a_kb_l}$$